# Reward-Augmented Data Enhances Direct Preference Alignment of LLMs





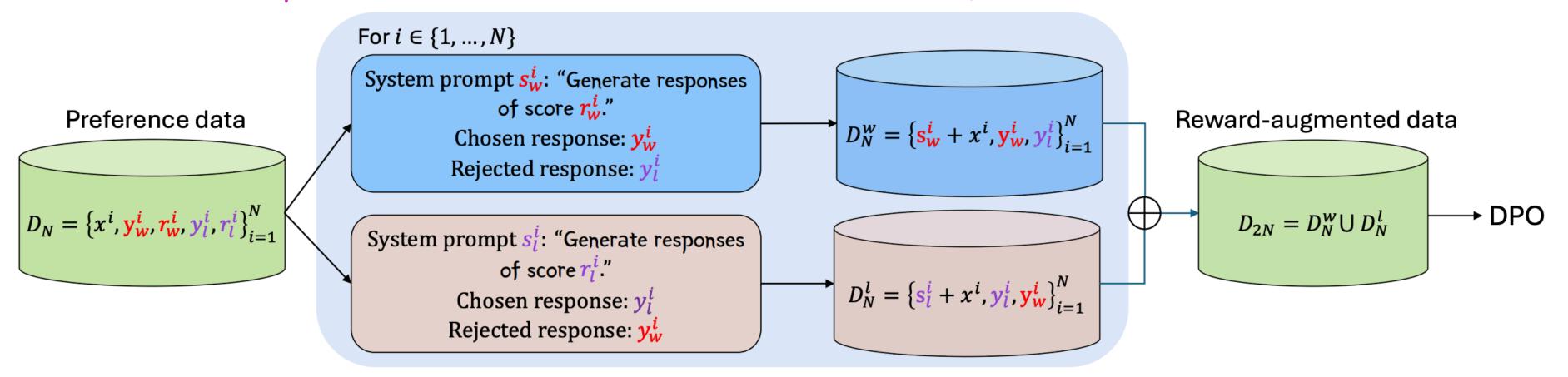
Shenao Zhang\*1, Zhihan Liu\*1, Boyi Liu2, Yufeng Zhang2, Yingxiang Yang<sup>2</sup>, Yongfei Liu<sup>2</sup>, Liyu Chen<sup>2</sup>, Tao Sun<sup>2</sup>, Zhaoran Wang<sup>1</sup>

<sup>1</sup>Northwestern University, <sup>2</sup>ByteDance Seed





## A simple data augmentation method for direct alignment!



## Limitations of DPO

### Relative preferences instead of response qualities

1. High-quality rejected text unnecessarily unlearned

| response                     | $  y_1  $    | $y_2$               |
|------------------------------|--------------|---------------------|
| r(x,y)                       | 9            | 8                   |
| $r(x,y) \ \mathcal{D}_{N=1}$ | $ $ $\{y_1>$ | $\rightarrow y_2$ } |
| $\pi^*(y \mid x)$            | 1            | 0                   |

Optimal policy deterministically generates y<sub>1</sub>

Fix: Reward-Conditioned Policies Learn from the full spectrum of qualities!

1. Learn from both high-quality responses

| response                      | $y_1$           | $y_2$ |  |
|-------------------------------|-----------------|-------|--|
| r(x,y)                        | 9               | 8     |  |
| $\mathcal{D}_{N=1}$           | $\{y_1 > y_2\}$ |       |  |
| $\pi^*(y \mid x)$             | 1               | 0     |  |
| $\pi^*(y \mid x, g = 9) \mid$ | 1               | 0     |  |
| $\pi^*(y \mid x, g = 8) \mid$ | 0               | 1     |  |

#### 2. Low-quality chosen text indiscriminately learned

| response            | $y_1$    | $y_2$              | $y_3$ |
|---------------------|----------|--------------------|-------|
| r(x,y)              | 9        | 1                  | 0     |
| $\mathcal{D}_{N=2}$ | $\{y_1>$ | $> y_3 , \; y_2 >$ | $y_3$ |
| $\pi^*(y \mid x)$   | 1-a      | a                  | 0     |

Optimal policy indiscriminately generates y<sub>1</sub> and y<sub>2</sub>

### 2. Distinguish varying-quality responses

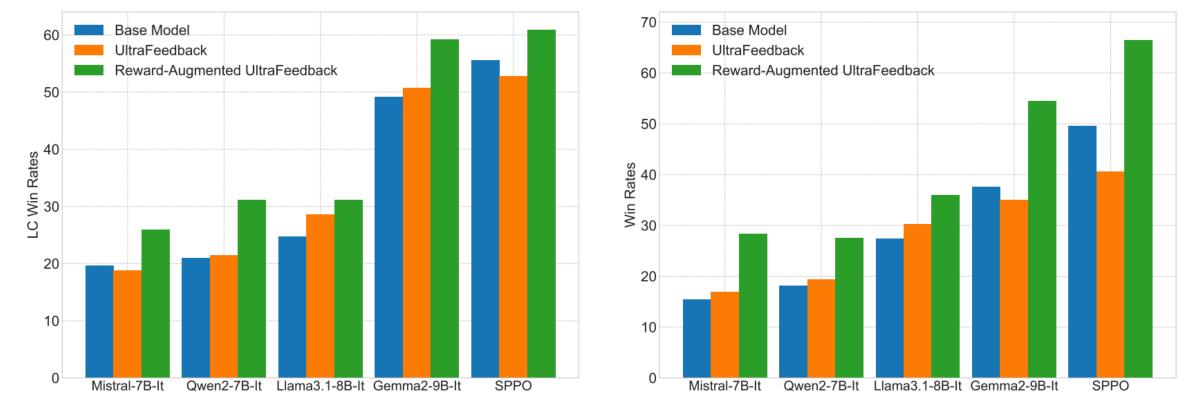
| response                      | $y_1$    | $y_2$        | $y_3$ |
|-------------------------------|----------|--------------|-------|
| r(x,y)                        | 9        | 1            | 0     |
| $\mathcal{D}_{N=2}$           | $\{y_1>$ | $y_3, y_2 >$ | $y_3$ |
| $\pi^*(y \mid x)$             | 1-a      | a            | 0     |
| $\pi^*(y \mid x, g = 9) \mid$ | 1        | 0            | 0     |
| $\pi^*(y \mid x, g = 1) \mid$ | 0        | 1            | 0     |
| $\pi^*(y \mid x, g = 0) \mid$ | 0        | 0            | 1     |

#### 3. Sparsity of optimal responses

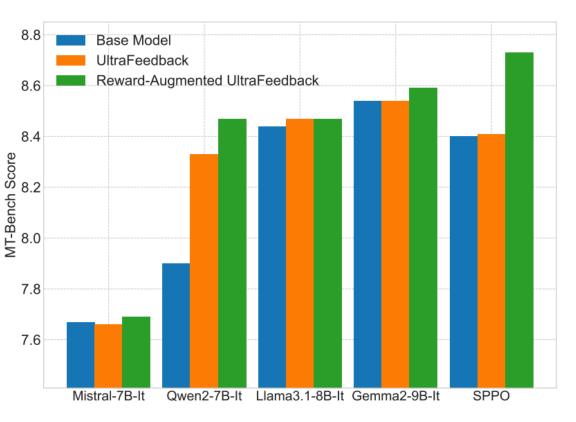
Fail to characterize and generalize to these behaviors

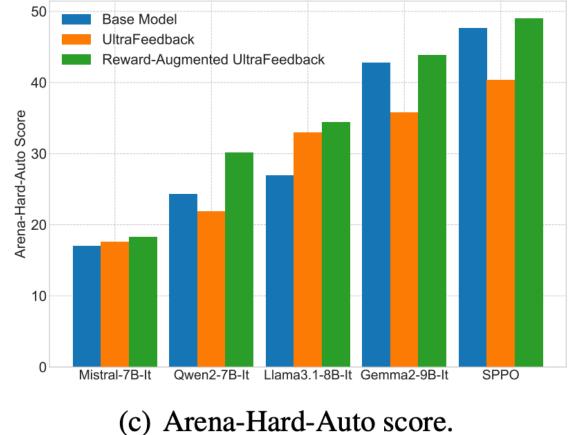
#### 3. Generalize with transferable features

Learning from g=8 and 9 helps generalize to g=10



(a) AlpacaEval 2.0 results. Left: Length-Controlled (LC) win rates. Right: Win rates.





(b) MT-Bench average score.

#### Reward augmentation gets more juice out of the data.

#### 

|           | LC WR | WR    | MT   | Arena |
|-----------|-------|-------|------|-------|
| SPPO      | 55.60 | 49.61 | 8.40 | 47.6  |
| +DPO (UF) | 52.75 | 40.58 | 8.41 | 40.4  |
| +DPO (RA) | 60.97 | 66.41 | 8.73 | 49.0  |

#### 2. Another DPO round on implicit-reward-relabeled data enhances the performance

|             | LC WR | WR    | MT   | Arena |
|-------------|-------|-------|------|-------|
| Qwen2-7B-It | 20.93 | 18.22 | 7.90 | 24.3  |
| +DPO (UF)   | 21.46 | 19.35 | 8.33 | 21.9  |
| +DPO (RA)   | 31.17 | 27.58 | 8.47 | 30.1  |
| +DPO (IRA)  | 32.61 | 29.15 | 8.49 | 28.3  |

...Find more ablations in our paper!